Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo.

Publication Type Academic Article
Authors Holtmaat A, Hermens W, Sonnemans M, Giger R, Van Leeuwen F, Kaplitt M, Oestreicher A, Gispen W, Verhaagen J
Journal J Neurosci
Volume 17
Issue 17
Pagination 6575-86
Date Published 09/01/1997
ISSN 0270-6474
Keywords Adenoviridae, Axons, Genetic Vectors, Membrane Glycoproteins, Nerve Endings, Nerve Tissue Proteins, Olfactory Pathways
Abstract B-50/GAP-43 is an intraneuronal membrane-associated growth cone protein with an important role in axonal growth and regeneration. By using adenoviral vector-directed expression of B-50/GAP-43 we studied the morphogenic action of B-50/GAP-43 in mature primary olfactory neurons that have established functional synaptic connections. B-50/GAP-43 induced gradual alterations in the morphology of olfactory synapses. In the first days after overexpression, small protrusions originating from the preterminal axon shaft and from the actual synaptic bouton were formed. With time the progressive formation of multiple ultraterminal branches resulted in axonal labyrinths composed of tightly packed sheaths of neuronal membrane. Thus, B-50/GAP-43 is a protein that can promote neuronal membrane expansion at synaptic boutons. This function of B-50/GAP-43 suggests that this protein may subserve an important role in ongoing structural synaptic plasticity in adult neurons and in neuronal membrane repair after injury to synaptic fields.
DOI 10.1523/JNEUROSCI.17-17-06575.1997
PubMed ID 9254670
PubMed Central ID PMC6573140
Back to Top