Publication Type Academic Article
Authors Koga M, Kim B, Lintz M, Kirnaz S, Goldberg J, Hussain I, Medary B, Meyers K, Maher S, Härtl R, Bonassar L
Journal JOR Spine
Volume 6
Issue 4
Pagination e1307
Date Published 12/27/2023
ISSN 2572-1143
Abstract BACKGROUND: Tissue-engineered intervertebral disc (TE-IVD) constructs are an attractive therapy for treating degenerative disc disease and have previously been investigated in vivo in both large and small animal models. The mechanical environment of the spine is notably challenging, in part due to its complex anatomy, and implants may require additional mechanical support to avoid failure in the early stages of implantation. As such, the design of suitable support implants requires rigorous validation. METHODS: We created a FE model to simulate the behavior of the IVD cages under compression specific to the anatomy of the porcine cervical spine, validated the FE model using an animal model, and predicted the effects of implant location and vertebral angle of the motion segment on implant behavior. Specifically, we tested anatomical positioning of the superior vertebra and placement of the implant. We analyzed corresponding stress and strain distributions. RESULTS: Results demonstrated that the anatomical geometry of the porcine cervical spine led to concentrated stress and strain on the posterior side of the cage. This stress concentration was associated with the location of failure of the cages reported in vivo, despite superior mechanical properties of the implant. Furthermore, placement of the cage was found to have profound effects on migration, while the angle of the superior vertebra affected stress concentration of the cage. CONCLUSIONS: This model can be utilized both to inform surgical procedures and provide insight on future cage designs and can be adopted to models without the use of in vivo animal models.
DOI 10.1002/jsp2.1307
PubMed ID 38156058
PubMed Central ID PMC10751973
Back to Top