Publication Type Academic Article
Authors Kuceyeski A, Vargas W, Dayan M, Monohan E, Blackwell C, Raj A, Fujimoto K, Gauthier S
Journal AJNR Am J Neuroradiol
Volume 36
Issue 4
Pagination 702-9
Date Published 11/20/2014
ISSN 1936-959X
Keywords Brain, Gray Matter, Models, Neurological, Multiple Sclerosis, White Matter
Abstract BACKGROUND AND PURPOSE: Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. MATERIALS AND METHODS: Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. RESULTS: Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39-0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R(2)) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. CONCLUSIONS: We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed.
DOI 10.3174/ajnr.A4165
PubMed ID 25414004
PubMed Central ID PMC4951088
Back to Top