Is Osteoarthritis a Vascular Disease?

Publication Type Review
Authors Olansen J, Dyke J, Aaron R
Journal Front Biosci (Landmark Ed)
Volume 29
Issue 3
Pagination 113
Date Published 03/19/2024
ISSN 2768-6698
Keywords Cartilage, Articular, Osteoarthritis, Vascular Diseases
Abstract Osteoarthritis (OA) is now considered as a multifaceted disease affecting various articular tissues, including cartilage, bone, synovium, and surrounding ligaments. The pathophysiology strongly implicates intricate chemical communication, primarily through cytokines, leading to the production of degradative enzymes in cartilage, inflammatory peptides in synovium, and structural changes in bone, resulting in characteristic clinical features such as joint deformities and loss of cartilage space seen on X-rays. Recent studies highlight the previously underestimated role of subchondral bone in OA, revealing its permeability to cytokines and raising questions about the influence of abnormal perfusion on OA pathophysiology, suggesting a vascular component in the disease's etiology. In essence, alterations in bone perfusion, including reduced venous outflow and intraosseous hypertension, play a crucial role in influencing the physicochemical environment of subchondral bone, impacting osteoblast cytokine expression and contributing to trabecular remodeling, changes in chondrocyte phenotype, and ultimately cartilage matrix degeneration in OA. Dynamic contrast (gadolinium) enhanced magnetic resonance imaging (DCE-MRI) was used to quantify perfusion kinetics in normal and osteoarthritic subchondral bone, demonstrating that decreased perfusion temporally precedes and spatially correlates with cartilage lesions in both young Dunkin-Hartley (D-H) guinea pigs and humans with osteoarthritis. Pharmacokinetic analysis of DCE-MRI generated data reveals decreased tracer clearance and outflow obstruction in the medial tibial plateau of osteoarthritic guinea pigs, coinciding with progressive cartilage degradation, loss of Safranin O staining, and increased expression of matrix metalloproteinases and interleukin-1. Positron emission tomographic (PET) scanning using 18F-Fluoride reveals a relationship among bone blood flow, cartilage lesions, and 18F-Fluoride influx rate in OA, highlighting the intricate relationships between decreased perfusion, altered bone metabolism, and the progression of osteoarthritis. These findings, supported by 18F-Fluoride PET data, suggest the presence of venous stasis associated with outflow obstruction, emphasizing the role of decreased subchondral bone perfusion in the pathophysiology of OA and its association with reduced osteoblast activity and advanced cartilage degeneration.
DOI 10.31083/j.fbl2903113
PubMed ID 38538286
Back to Top